Magna Metals Site # **NYSDEC Site No. 360003** **CORTLANDT, NEW YORK** Soil Vapor Investigation Work Plan (Revised) **AKRF Project Number: 40256** # Prepared for: ISCP Properties % Kramer, Coleman, Wactlar & Lieberman, P.C. 100 Jericho Quadrangle Jericho, New York 11753 Prepared by: AKRF, Inc. 34 South Broadway, Suite 314 White Plains, NY 10601 **FEBRUARY 2007** # **TABLE OF CONTENTS** | 1.0 | INTRODUCTION | 1 | |--------|-----------------------------------------------------------|---| | 2.0 | SITE DESCRIPTION | 1 | | 2.1 | Site Location | | | 2.2 | Site and Vicinity Characteristics | 1 | | 2.3 | Site Geology, Hydrogeology and Subsurface Characteristics | | | 2.4 | Review of Site History | | | 2.5 | Previous Studies | | | 3.0 | FIELD PROGRAM | | | 3.1 | Field Program Summary | | | 3.2 | Sub-Slab Soil Vapor Sampling | | | 3. | 2.1 Sampling Point Installation | | | 3. | 2.2 Sample Set-up | | | 3. | 2.3 Sample Collection | | | 3. | 2.4 Miscellaneous | | | 3.3 | Indoor Air Sampling | | | 3.4 | Laboratory Methods | | | 3.5 | Quality Assurance / Quality Control | | | 3.6 | Pre-Sampling Survey | | | 4.0 | REPORTING REQUIREMENTS | 6 | | 4.1 | Soil Vapor Investigation Report | | | 4.2 | Schedule of Work | | | 5.0 | REFERENCES | | | | | | | | FIGURES | | | | | | | Figure | • | | | Figure | 2 Soil-Vapor Sampling Results – January 2006 | | | Figure 1 | Site Location Map | |----------|--------------------------------------------| | Figure 2 | Soil-Vapor Sampling Results – January 2006 | | Figure 3 | Proposed Sampling Locations | # **APPENDICES** | Appendix A | Purge Volume Calculation | |------------|---------------------------------------------------------------------| | Appendix B | NYSDOH Indoor Air Quality Questionnaire and Building Inventory Form | ## 1.0 INTRODUCTION Investigation at the Magna Metals Site, located in Cortlandt, New York, has been conducted to comply with a New York State Department of Environmental Conservation's (NYSDEC) Consent Order (Site No. 360003). In June 2006, Tetra Tech EC, Inc. (TTI) submitted a letter report to the NYSDEC that summarized the results of soil vapor sampling and additional groundwater sampling. In November 2006, the NYSDEC issued a correspondence requiring sampling of the office/warehouse building located east of the former Magna Metals building to confirm that soil vapor intrusion is not occurring. This Work Plan outlines a protocol for collection of sub-slab soil vapor samples and air samples to satisfy the NYSDEC requirements. #### 2.0 SITE DESCRIPTION #### 2.1 Site Location The Magna Metals site is located in the Town of Cortlandt, Westchester County, New York, near the intersection of Furnace Dock Road and Maple Avenue. A site location map is included in Figure 1. Nearby towns include Peekskill and Croton-on-Hudson, and the Hudson River is located 3 miles west of the site. # 2.2 Site and Vicinity Characteristics Locally, the site is part of a larger commercial property owned by Baker Properties, having several operating businesses which currently include Polymedco, Motion Labs, and Brook. The office/warehouse building was reported by the owner to include some manufacturing activities. Baker Properties acquired the property from ISC Properties, Inc. in 1982, and has leased it to various tenants. The identity of these tenants, their use of the property, and their waste disposal practices are unknown. The Croton Egg Farm and an inactive emery mine are located to the west and to the north-northwest of the site, respectively. To the north, south, and east of the project site are residential areas. A wetland area is located between the site and the residential area southwest of the site. ## 2.3 Site Geology, Hydrogeology and Subsurface Characteristics Topography is variable throughout the 0.5-mile radius from the site. Elevations range from 300 to 600 feet above mean sea level (MSL). On the former Magna Metals site, topography ranges from 360 feet MSL along the eastern site boundary to 320 feet MSL along the western site boundary. Stormwater drainage flows towards the west, following site topography, and drains into an unnamed tributary to Furnace Brook. The tributary flows south/southwest and discharges into a pond located in a large wetland area. Stormwater on the former Magna Metals site leaves the site via overland flow and enters into the unnamed tributary. One catch basin was observed by TTI on the former site property. This basin is located in the central western portion of the site and collects discharge water from a roadway/parking area. The roadway is a mix of gravel and pavement. A search for the catch basin's outfall pipe was conducted along the unnamed tributary. An outfall pipe was not located. The stormwater collection system on Furnace Dock Road discharges into the unnamed tributary near the intersection of Furnace Dock Road and Gilman Lane. The geologic characteristics of the subsurface conditions at the site consist primarily of a sandy to silty sand overburden unit, approximately 10 to 20 feet thick, overlying bedrock. The bedrock is mapped by the New York State Museum and Science Service as Hornblende Norite, which is a part of the Cortlandt Mafic Complex. Overburden groundwater exists in the form of a very shallow overburden aquifer (i.e., typically less than five feet in thickness). Groundwater flow from the site is in the western direction towards the stream and wetland area. Results of the slug tests completed by TTI indicate a range in hydraulic conductivity values from 5.3 x 10⁻⁵ cm/sec (or 0.16 ft/day) at MW-1 in the higher portion of the site to 2.2 x 10⁻³ cm/sec (6.2 ft/day) at MW-3 in the lower portion of the leach pit area. Previous groundwater sampling by TTI indicates that some monitoring wells were observed to be dry during seasonal low groundwater conditions. #### 2.4 Review of Site History Metal plating, polishing, and lacquering operations were conducted at the Magna Metals site from 1955 to 1979. During operation, iron, lead, copper, nickel, and zinc chlorides, cyanides, and sulfates were discharged to a series of leaching pits. Spent trichloroethylene (TCE) was drummed and removed. # 2.5 Previous Studies Between 1978 and 1984, site investigations were completed by the New York State Department of Health (NYSDOH), the NYSDEC, and William Cosulich to determine if property uses had resulted in contamination. The investigations concluded that soil, groundwater, sediment, and, surface water contamination existed at the site. In 1998, Foster Wheeler Environmental Corporation (predecessor to TTI) completed a Remedial Investigation/Feasibility Study (RI/FS) to delineate the nature and extent of leach pit/septic tank/holding tank, surface water, sediment, surface soil, subsurface soil, and groundwater contamination at the site, such that an evaluation of (1) the nature and extent of site contamination, (2) the potential impacts, if any, and (3) the remedial measure options could be performed. The field investigation program consisted of the drilling of soil borings, the installation and development of monitoring wells, the performance of a habitat-based assessment, and the sampling and analysis of various environmental media including septic tank/leach pit sludge and water, surface soil, subsurface soil, surface water, sediment, and groundwater. A geophysical survey was added to the field investigation to improve location accuracy of the leach pit/septic tank/holding tank sampling. In 2004, TTI completed a Draft Supplemental RI/FS to perform horizontal and vertical delineation of the soil and groundwater contamination in the potential source area of the site, the leach pit area. The investigation included a geophysical and excavation survey to locate leach pits, leach pit excavation, a homeowner well survey, installation of overburden monitoring wells and a bedrock monitoring well, and collection of soil, groundwater, surface water and sediment samples. Based on the data compiled in the supplemental investigation, TTI concluded the following: - Concentrations and distributions of contaminant compounds and analytes detected during the Supplemental RI are consistent with contaminant concentrations and distributions detected during previous investigations. - Xylenes, semivolatile organic compounds (SVOCs), and metals were detected in leach pit sludge samples. Xylenes were detected in soil samples collected below the leach pits - TCE was detected in the groundwater sample collected from MW-04 and MW-04D. - Media sampled were affected by inorganic contaminants of concern at concentrations above soil cleanup criteria. In particular, chromium, copper, mercury, nickel, and zinc are potentially site related compounds that were detected at concentrations exceeding applicable criteria. - Thirteen leach pits/septic pits had been discovered at the Magna Metals site. - There appeared to have been two phases of leach pit/septic tank construction at the site. The first and older set of leach pits was constructed of concrete cinder blocks with a soil or gravel bottom. The second phase of leach pits was constructed of prefabricated concrete cylinders with perforated sides and apparently soil or gravel bottoms. Sludge or sludge cakes were still present in twelve of the thirteen pits at the site. - Based on inorganic analytical results (particularly copper) for the surface water, groundwater, and surface soil samples collected downgradient of the leach pit area and the former Magna Metals building, it appeared that the wetlands east of Furnace Brook and the unnamed tributary may have been impacted by contaminated groundwater or surface runoff originating in the vicinity of the leach pit area and site building. - Impacts to pelagic and benthic aquatic life were observed in indigenous and laboratory based analyses. The primary environmental media of concern were surface waters and sediments of Furnace Brook, its unnamed tributary, and the palustrine wetlands associated with the site. In 2006, TTI completed an additional investigation, which included the collection of groundwater samples from existing wells and two new wells next to the former Magna Metals building, and soil vapor samples from three exterior locations along western side of office/warehouse building, five exterior locations within the area containing the leach pits, and one interior sub-slab sample from the building south of the Magna Metals building and the office/warehouse building. The sampling results indicated that groundwater collected from the two new monitoring wells did not contain contaminants above NYSDEC water quality standards and the overall samples were consistent with previous data. The soil gas sample results documented that VOCs were detected at concentrations ranging from 1 to 1,900 micrograms per cubic meter. A site map showing the soil gas sampling locations and the laboratory sampling results is included as Figure 2. TTI concluded that the sampling results were consistent with the findings of the current and previous sampling and did not indicate there were unknown sources. In November 2006, the NYSDEC issued correspondence requiring the sampling of sub-slab soil vapor from the on-site office/warehouse building to the east of the Magna Metals building to confirm that soil vapor intrusion was not occurring. This was in response to a TCE concentration of 59 micrograms per cubic meter in one soil vapor sample (SV-03) that was collected next to the office/warehouse building. # 3.0 FIELD PROGRAM The objectives of the field-sampling program are to confirm that soil vapor intrusion is not occurring in office/warehouse building located east of the former Magna Metals building. This work plan has been prepared to implement the associated sampling activities in accordance with NYSDOH's requirements (NYSDOH, 2006). The field program is outlined in Section 3.1, and the subsequent sections give the detailed methodologies for implementation. # 3.1 Field Program Summary It is AKRF's understanding that site access for the property and study building has been agreed upon between ISCP Properties and the property owner/manager through a signed access agreement. Sub-slab soil-gas samples and indoor air samples will be collected at five locations from the lowest level in the office/warehouse building participating in this study. Figure 3 shows the project site building, the adjacent buildings, and the approximate locations for soil gas sampling. However, the exact position and the total number of these sampling locations will be determined in the field after completing a pre-sampling survey. The pre-sampling survey is described in Section 3.6 of this work plan. # 3.2 Sub-Slab Soil Vapor Sampling Soil gas samples will be collected using a stainless steel probe, consisting of a drive point and internal perforated sampling port with a retractable tip, connected to Teflon sampling tubing. The sampling tubing will extend from the sampling port through a drive casing to above grade. Collectively, the retractable tip, sampling port and sampling tube are referred to as the "soil gas sampler". The soil gas sampling (and concurrent indoor air sampling) will be conducted during the normal 8-hour workday at the facility. Eight-hour flow regulators will be used for the sampling. Soil gas samples will be collected using the following procedures: # 3.2.1 Sampling Point Installation - 1. Prepare the sampling point location by drilling through the building slab using a concrete drill equipped with a 2-inch diameter drill bit. - 2. Attach new, clean ³/₁₆-inch inside diameter Teflon tubing to the sampling probe. - 3. Drive the sampling probe and attached tubing to a depth of two inches below the bottom of the concrete slab. - 4. Backfill the soil gas sampler with 2-inches of clean sand filter pack to prevent intake clogging. - 5. Retract the drive casing to expose the perforated sampling port. - 6. Record total depths (interval below grade) to which probe is advanced and withdrawn for sample collection. - 7. Seal the annulus at the surface (between the building concrete slab and tubing) by placement of portland cement and let set overnight. ## 3.2.2 Sample Set-up - 1. Install a 2-foot by 2-foot 6-mil plastic shroud over sampling point, seal to concrete floor using duct tape along the perimeter, and pull the Teflon soil gas sampling tubing through the shroud to allow for sampling collection. - 2. Pierce the plastic shroud, insert one of new tubing into the shroud, and connect the other end of the tubing to the helium tank. - 3. Install new flexible hose to a peristaltic pump and connect the Teflon sample tubing to the hose. Connect the other end (discharge end) of the flexible tubing to a 0.5-liter Tedlar bag. Purge the soil gas sampler of approximately three sampler volumes (0.4 liters) by activating the pump to fill the Tedlar bag to near capacity (see Appendix B for sampler volume calculations). The air withdrawal flow rate shall be 0.2 liters/minute or less. - 4. During purging, a flow of helium gas will be introduced into the plastic shroud overlying the soil gas sampling point. The Tedlar bag will be analyzed in the field using a Marks Model 9822 helium detector to check for short-circuiting of outside air into the sampling port. If helium is detected at a concentration of greater than 10 percent, then the soil gas point will be resealed with hydrated bentonite. The point will then be retested to ensure that the helium concentration is less than 10 percent. - 5. Disconnect the sample tubing from the peristaltic pump and connect it to the inlet of a labeled 1-liter Summa canister. - 6. Repeat procedure for all sampling locations. # 3.2.3 Sample Collection - 1. After Summa canisters are set up at all of the sampling locations, record the vacuum reading from the vacuum gauge on the canister at the beginning of the 8-hour sampling period. Open the valve of the canister and record the time in the field book. - 2. At the end of the 8-hour sampling period, close the valve, remove the flow-rate controllers and vacuum gauges, install caps on canisters, and record the time at the end of the sampling period. - 3. Place canisters in shipping containers for transportation to laboratory. - 4. Repeat procedure for all sampling locations. #### 3.2.4 Miscellaneous - 1. Decontaminate the stainless steel sampling probe by the following measures: - a. Scrub using tap water/Alkanox® mixture and bristle brush. - b. Rinse with tap water. - c. Scrub again with tab water/Alkanox® and bristle brush. - d. Rinse with tap water. - e. Rinse with distilled water. - f. Air dry equipment. - 2. Dispose of the sample tubing. - 3. Document sample locations and measurements in the field logbook or on field data sheets. ## 3.3 Indoor Air Sampling - 1. The indoor air sampling is to be conducted concurrently with the soil gas sampling. - 2. Place a labeled 1-liter Summa canister at the breathing zone level (4.5 to 5 feet above ground surface) in the designated sampling location adjacent to the soil gas sampling location. - 3. Record the vacuum reading from the vacuum gauge on the canister at the beginning of the 8-hour sampling period. - 4. Open the valve of the canister and record the time in the field book. At the end of the 8-hour sampling period, close valve, remove flow-rate controllers and vacuum gauges, install caps on canisters, and record time. - 5. Place canisters in shipping containers for transportation to laboratory. - 6. Repeat procedure for all of the sampling locations. # 3.4 Laboratory Methods The samples will be analyzed for VOCs by EPA Method TO-15 with a detection limit of 1 ug/m³ for all compounds, except for trichloroethylene, which will have a detection limit of 0.25 ug/m³ for indoor air samples. All sample analysis will be performed in a New York State Department of Health Environmental Laboratory Approval Program (NYSDOH-ELAP) laboratory certified to perform NYSDEC Analytical Services Protocol (ASP). The laboratory will produce Category B deliverables. Samples will be shipped to the laboratory with appropriate chain of custody documentation. # 3.5 Quality Assurance / Quality Control In addition to the laboratory analysis of the field samples, additional analysis will be included for quality control measures. These samples will include one field blank and one blind duplicate to be analyzed for VOCs by EPA Method TO-15. The field blank will consist of collecting an air sample via the soil gas sampler exposed to ambient conditions. Category B deliverables will be produced for this project. # 3.6 Pre-Sampling Survey A pre-sampling survey will be conducted prior to initiating the soil vapor sampling program. The survey will be completed to document any factors that may affect indoor air quality. The survey will include interviews with building owners and/or building occupants. Documentation will be compiled of the building characteristics, air flow patterns, heating, venting and air conditioning, occupancy, water and sewage utilities, building operations, product inventory, and any other known factors that may affect indoor air quality. When conducting the survey, a PPB RAE or equivalent photoionization detector (PID) will be used to detect VOCs in parts per billion (ppb). The exact location and quantity of sampling locations will be determined in the field after completing the pre-sampling survey and consultation with the NYSDEC and/or NYSDOH. A NYSDOH Indoor Air Quality Questionnaire and Building Inventory form will be used to document the results of the survey. The NYSDOH form is attached as Appendix B. ## 4.0 REPORTING REQUIREMENTS #### 4.1 Soil Vapor Investigation Report Upon completion of all field work and receipt of laboratory analytical results, a Soil Vapor Investigation Report (SVIR) will be prepared that will: document field activities; present field and laboratory data; evaluate exposure and risks to human health; and discuss conclusions and recommendations drawn from the results of the investigation. #### 4.2 Schedule of Work A tentative schedule for implementing the Soil-Vapor Investigation Work Plan is provided below: | Date | Activity | |-------------------|-----------------------------------------------------------| | January 10, 2007 | Submit Work Plan to NYSDEC & NYSDOH | | January 26, 2007 | Receive comments from NYSDEC & NYSDOH | | February 26, 2007 | Implement field program for soil vapor and air sampling | | March 30, 2007 | Submit Soil Vapor Investigation Report to NYSDEC & NYSDOH | ## 5.0 REFERENCES Foster Wheeler Environmental Corporation; Remedial Investigation/Feasibility Study (RI/FS), Magna Metals Site, Cortlandt, New York; June 1998. Tetra Tech FS, Inc.; Draft Supplements Remedial Investigation Report, Magna Metals Site, Cortlandt, New York; August 2004. Tetra Tech EC, Inc.; Data Findings From the Additional Data Collection Activities for the Former Magna Metals Site (NYSDEC Site No. 360003), Cortlandt, New York; June 2006. New York State Department of Health, Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October 2006. New York State Department of Environmental Conservation, Division of Environmental Remediation, DER-13/Strategy for Evaluating Soil Vapor Intrusion at Remedial Sites in New York, October 2006. New York State Department of Environmental Conservation, Division of Environmental Remediation, Draft DER-10/Technical Guidance for Site Investigation and Remediation, December 2002. New York State Museum and Science Service Geological Survey, Map and Chart Series No. 15; Geologic Map of New York, Lower Hudson Sheet, New York; 1970; Reprinted 1995. **FIGURES** APPENDIX A PURGE VOLUME CALCULATION # **Soil Gas Sampler Purge Volume Calculation** Volume of Sampling Tip & Disturbed Boring Inside Diameter = 2 in Length (sampling tip + drive tube) = 2 in $V_1 = pi * [2/(2*12)]^2 * 6/12 = 3.6E-03 ft^3$ Volume of Teflon Tubing Inside Diameter = 3/16" = 0.1875" 0.1875 in Length = 3 ft $V_2 = pi * [0.1875/(2*12)]^2 * 5 = 5.8E-04 ft^3$ Total Volume of Sampler $V = V_1 + V_2 =$ 4.2E-03 ft³ = 1.2E-01 liter 3x volume = 0.4 liter APPENDIX B NYSDOH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY FORM # NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH This form must be completed for each residence involved in indoor air testing. | Preparer's Name | | Date/Time Prepared | 1 | |-------------------------------------|-----------------------|----------------------------------------|-------------| | Preparer's Affiliation | | Phone No | | | Purpose of Investigation_ | | | | | 1. OCCUPANT: | | 3
| | | Interviewed: Y/N | | | | | Last Name: | | First Name: | | | Address: | | | | | County: | | | | | Home Phone: | Offic | e Phone: | | | Number of Occupants/pers | sons at this location | n Age of Occupants | | | 2. OWNER OR LANDLE Interviewed: Y/N | ORD: (Check if s | ame as occupant) | 4 | | Last Name: | F | irst Name: | | | Address: | | | ±* | | County: | | ************************************** | | | Home Phone: | Offi | ce Phone: | s | | 3. BUILDING CHARAC | | | | | Type of Building: (Circle | appropriate respo | nse) | | | Residential
Industrial | School
Church | Commercial/Multi-use Other: | | | If the property is residenti | al, type? (Circle app | propriate respons | se) | | |------------------------------|--|-------------------|-----------------------------|---------| | Ranch | 2-Family
Split Level | 3-Fami | | | | Raised Ranch
Cape Cod | Contemporary | Coloni
Mobile | | | | Duplex | Apartment Hou | | ouses/Condos | | | Modular | Log Home | | | | | If multiple units, how man | y? | | | | | If the property is commer | cial, type? | | | | | Business Type(s) | ······································ | **** | | | | Does it include residen | ces (i.e., multi-use)? | Y/N | If yes, how many? | | | Other characteristics: | | | | | | Number of floors | _ | Building age | 4// | | | Is the building insulated | 17 Y / N | How air tight? | Tight / Average / Not Tigh | ıt | | 4. AIRFLOW | | | | | | Use air current tubes or to | racer smoke to eval | uate airflow pa | tterns and qualitatively de | scribe: | | | | • | 1 | | | Airflow between floors | | | | | | | (8) | · | | | | | | | | | | | - | | | | | Airflow near source | | | | * | | | | | | | | | | | | | | (a) | | | | | | | | | | | | Outdoor air infiltration | Infiltration into air ducts | | | | | | | | | | | | | | | | | | | 5. | BASEMENT | AND | CONSTRUCTION | CHARACTERISTICS | (Circle all that apply |) | |--|----|----------|-----|--------------|-----------------|------------------------|---| |--|----|----------|-----|--------------|-----------------|------------------------|---| | a. Above grade constructi | on: wood frame | concrete | stone | brick | | | |---|---|---|--|----------------|--|--| | b. Basement type: | full | crawlspace | slab | other | | | | c. Basement floor: | concrete | dirt | stone | other | | | | d. Basement floor: | uncovered | covered | covered with | | | | | e. Concrete floor: | unsealed | sealed | sealed with | | | | | f. Foundation walls: | poured | block | stone | other | | | | g. Foundation walls: | unsealed | sealed | sealed with _ | | | | | h. The basement is: | wet | damp | dry | moldy | | | | i. The basement is: | finished | unfinished | partially finish | ned | | | | j. Sump present? | Y/N | | | | | | | k. Water in sump? | Y/N/not applicable | ; | | | | | | Basement/Lowest level depth below grade:(feet) | | | | | | | | Identify potential soil vapor o | and a hours and abbit | Alliate Size (e. | g., cracks, utility | ports, drains) | | | | Identify potential soil vapor of | nu y points and appro | Annate Size (c.) | g., cracks, utility | ports, drains) | | | | Identify potential soil vapor of | ли у рошиз вий аррго | Annate Size (c.g | g., cracks, utility | ports, drams) | | | | 6. HEATING, VENTING a Type of heating system(s) use | nd AIR CONDITION | ING (Circle all | that apply)
ly – note primar | | | | | 6. HEATING, VENTING a | nd AIR CONDITION | ING (Circle all rcle all that app Hot tion Radi | that apply) Iy – note primar water baseboard ant floor | | | | | 6. HEATING, VENTING a Type of heating system(s) uso Hot air circulation Space Heaters | nd AIR CONDITION ed in this building: (cir Heat pump Stream radia: Wood stove | ING (Circle all rcle all that app Hot tion Radi | that apply) Iy – note primar water baseboard ant floor | ·y) | | | | 6. HEATING, VENTING a Type of heating system(s) use Hot air circulation Space Heaters Electric baseboard | nd AIR CONDITION ed in this building: (cir Heat pump Stream radia: Wood stove | ING (Circle all rcle all that app Hotelion Radio | that apply) Iy – note primar water baseboard ant floor loor wood boiler | ·y) | | | | 6. HEATING, VENTING a Type of heating system(s) use Hot air circulation Space Heaters Electric baseboard The primary type of fuel use Natural Gas Electric | nd AIR CONDITION ed in this building: (cin Heat pump Stream radia: Wood stove d is: Fuel Oil Propane Coal | ING (Circle all rele all that app Hot tion Radi Outd Kerc | that apply) Iy – note primar water baseboard ant floor loor wood boiler osene | ·y) | | | | 6. HEATING, VENTING a Type of heating system(s) use Hot air circulation Space Heaters Electric baseboard The primary type of fuel use Natural Gas Electric Wood | nd AIR CONDITION ed in this building: (cir Heat pump Stream radia: Wood stove d is: Fuel Oil Propane Coal | ING (Circle all rele all that app Hot tion Radi Outd Kerc | that apply) Iy – note primar water baseboard ant floor loor wood boiler osene | ·y) | | | | Are there air di | stribution ducts present? Y/N | | | | |---|---|-----------------------------------|--|-----------------------------------| | Describe the sup
there is a cold a
diagram. | oply and cold air return ductwork, and ir return and the tightness of duct joints | its condition s
s. Indicate th | where visible, ir
e locations on ti | ncluding whether
he floor plan | | | S S | | | | | | | | | | | | | | 21.10 | | | | | | | | | | | | | | | | e • | | | | | 7. OCCUPAN | CY | | | | | Is basement/low | vest level occupied? Full-time O | ccasionally | Seldom | Almost Never | | Level | General Use of Each Floor (e.g., family | room, bedro | om, laundry, wo | orkshop, storage) | | | i) | | | | | Basement | 8 " | T | | | | 1st Floor | 25 | | | | | 2 nd Floor | | | | | | 3 rd Floor | | | | | | 4 th Floor | Į. | | | | | | | | | * | | 8. FACTORS 7 | THAT MAY INFLUENCE INDOOR AI | R QUALITY | • | 9 | | a. Is there an | attached garage? | | Y/N | | | b. Does the g | arage have a separate heating unit? | | Y/N/NA | | | | eum-powered machines or vehicles
ne garage (e.g., lawnmower, atv, car) | 10 | Y/N/NA
Please specify_ | · | | d. Has the bu | ilding ever had a fire? | | Y/N When? | | | e. Is a kerose | ne or unvented gas space heater present | ? | Y/N Where | ? | | f. Is there a v | orkshop or hobby/craft area? | Y/N | Where & Type | 7 | | g. Is there sm | oking in the building? | Y/N | How frequently | ? | | h. Have clear | ing products been used recently? | Y/N | When & Type? | | | i. Have cosm | etic products been used recently? | Y/N | When & Type? | | | j. Has painting/stai | ning been done i | in the last 6 mo | nths? Y/N | Where & Wh | en? | |--|--|------------------------------------|--------------------|------------------|---------------------| | k. Is there new carp | et, drapes or ot | her textiles? | Y/N | Where & Wh | en? | | l. Have air freshend | ers been used re | Y/N | When & Type | e? | | | m. Is there a kitche | n exhaust fan? | | Y/N | If yes, where | vented? | | n. Is there a bathre | oom exhaust fan | ? | Y/N | If yes, where | vented? | | o. Is there a clothes | dryer? | | Y/N | If yes, is it ve | nted outside? Y / N | | p. Has there been a | pesticide applic | eation? | Y/N | When & Type | e? | | Are there odors in
If yes, please descr | | | Y/N | | 2 | | Do any of the buildin
(e.g., chemical manufa
boiler mechanic, pestion
If yes, what types of | cturing or labora
eide application, | tory, auto mecha
cosmetologist | anic or auto body | | ** | | If yes, are their cloth | | | Y/N | | | | Do any of the buildin response) | g occupants reg | ularly use or w | ork at a dry-clea | nning service? | (Circle appropriate | | Yes, use dry-c | leaning regularly
leaning infrequen
dry-cleaning ser | ntly (monthly or | less) | No
Unknown | - | | Is there a radon mitig | | r the building/s
Active/Passive | | Date of Instal | lation: | | 9. WATER AND SEV | WAGE | | | 15 | | | Water Supply: | Public Water | Drilled Well | Driven Well | Dug Well | Other: | | Sewage Disposal: | Public Sewer | Septic Tank | Leach Field | Dry Well | Other: | | 10. RELOCATION I | | - | _ | | | | b. Residents choo | se to: remain in | home reloca | ate to friends/fam | ily reloc | ate to hotel/motel | | c. Responsibility | for costs associa | ted with reimb | ursement explai | ned? Y/N | Ī | | d. Relocation pag | kage provided a | and explained to | o residents? | Y/N | Ī | # 11. FLOOR PLANS Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note. # Basement: # First Floor: ## 12. OUTDOOR PLOT Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings. Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map. | 13. | PROD | UCT | INVENT | 'ORY | FORM | |-----|-------------|-----|--------|------|------| |-----|-------------|-----|--------|------|------| | Make & Model of field instrument used: | | |--|--| |--|--| List specific products found in the residence that have the potential to affect indoor air quality. | Location | Product Description | Size
(units) | Condition' | Chemical Ingredients | Field
Instrument
Reading
(units) | Photo ** Y/N | |------------|---------------------|-----------------|------------|----------------------|---|--------------| | | Ø | | | 2 | | | | | | | | | | | | | • | | | = | | | | a) | | | | | | | | | | | | | | = | | | | | | | | L. | | | | | | | 60 | | | | | | | | | | | | | | | | N. | | | | | | | | | G | | | | | | | | | | | | | | | | | | | 1 | 580 | | | p. | 96 * | | | | | | | - | 2.42 | | | | | | | | 94 | | | | | | | 162 | | | | | | | | 8) 11 | | | | | | | | | | | | | (| | | | 1.2 | | | 2 | | | | | | ^{*} Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D) P:\Sections\SIS\OII Spills\Guidance Docs\OSR-3.doc ^{**} Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.